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It is shown that a useful generalized linear filter I4,' can be constructed from 
experimental data. The data are divided into many experiments and this 
ensemble is used to calculate the autocorrelation functions which appear in IV. 
In turn, from this filter one determines a "Hamiltonian" .,V'. The eigenvectors 
and eigenvalues of this Hamiltonian are evaluated. For a "good" experiment 
there is one small eigenvalue, and the rest are ~ 1. The I,V so determined use- 
fully reduces the noise in a new data set. The presence of two or more small 
eigenvalues indicates that the experimental data contains more than a single 
signal. The action of W on selected members of the ensemble, and/or new data 
sets, extracts the different signals with, again, a useful noise reduction. Both 
computer simulations and real positron annihilation data are used to illustrate 
these developments. 
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1. INTRODUCTION 

T h e  idea  o f  u s i n g  a l i nea r  fi l ter for  the  t r e a t m e n t  of  d a t a  o r i g i n a t e s  wi th  

W i e n e r  (see, e.g., ref. 1 ) a n d  was  d e v e l o p e d  a l m o s t  ha l f  a c e n t u r y  ago  in the  

c o n t e x t  of  a pass ive  e l e c t r o n i c  f i l ter  e l e m e n t  for  the  t r e a t m e n t  of  r a d a r  

s ignals .  M o r e  recen t ly ,  a g e n e r a l i z a t i o n  of  th is  t e c h n i q u e  h a s  b e e n  a p p l i e d  

to  the  p r o b l e m  of  the  t r e a t m e n t  of  images  (see, e.g., refs. 1 a n d  2). H e r e  we 

p r e s e n t  w h a t  we bel ieve  is a new  a p p l i c a t i o n  of  these  m e t h o d s  (for  a dif- 

f e ren t  a p p r o a c h  see refs. 3) for  the  ana lys i s  of  l a rge  d a t a  sets a c c u m u l a t e d  
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in connection with, e.g., two-dimensional angular correlation positron 
annihilation experiments (see, e.g., the work of the Geneva groupC41). 

As is the case for the experiments in question, t4~ it is envisaged that a 
data set comprises a two-dimensional image g~(x, y). Here the subscript i 
labels the data set and the coordinates x, y locate a given pixel in that 
image. Dirac notation will be adopted, i.e., there is a vector Ig,-) for which 
g~(x, y ) =  (x, Ylg~) is its representation in the pixel set. The signal 
corresponds to I f )  and the data set I g i ) =  I f ) +  In~) is degraded by a 
particular example of the noise reflected by [ni). Initially, the idea is to 
demand a filter W such that W I g i ) =  I f ) .  Clearly such a filter minimizes 
(actually yields zero for) the average normalization A = (eilei), where the 
"error" vector is l e ~ ) = W I g ~ ) - I f ) .  If such a W can be found it is 
described as ideal, since it recovers the noise-free signal from a noisy data 
set. Of course, the criterion that the mean square error A be a minimum 
is not unique. The present formulation leads to a linear filter. The develop- 
ment, e.g., of a nonlinear filter is also possible, but if formulated in the 
present fashion, would correspond to some other minimal criterion. 

In this analysis it is assumed, as is the case for the experiments of 
interest, that the noise power is known. In the context of the positron data, 
the average amplitude is the usual ~x /~ , ' ,  where N~ is the number of 
counts associated with a given pixel, i.e., in this case there is good model 
for the noise. In other contexts it might be that the noise can be measured 
separately, as in the original problem considered by Wiener. Whichever is 
the case, the knowledge of the noise is contained in an autocorrelation 
function R,,,, = In~)(n~l. There will be similar definitions for R:: and Rgg. 

Common sense dictates that an ideal filter can only be found under 
very special circumstances. Such a filter exists in the simplest case when it 
is assumed that the above-defined average is for an infinite ensemble of 
experiments. This simplest theory is presented in Section 1. Section 2 
presents an analysis valid when a single W is sought but in fact there are 
two or more signals If~), If2) .... contained in the data. It is shown that the 
same general formula for W can be used for the two cases and that there- 
fore this filter can be used as an analytic tool by which to examine data 
sets for the presence of many signals or signals which fluctuate between 
experiments. In this context it is useful to introduce a "Hamiltonian" 

= (1 - W*)(1 - W). This y/~ has as many small eigenvectors as there are 
significant signals in the data set, i.e., for the present example, there are two 
eigenvalues which are approximately zero and the rest which correspond to 
the possible noise signals having eigenvalues of unity. The eigenvectors 
with small eigenvalues correspond to the average and difference of the 
signals. 

In Section 3 attention is focused on the more realistic problem when, 
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in fact, there is only a finite set of experiments. In this section it is still 
assumed that the number of experiments is large but not infinite, i.e., 
account is taken of the fact that in general I~), the average noise, is not 
negligible compared to the average signal. Surprisingly, there is still an ideal 
filter W which will remove all noise. Unfortunately, or perhaps evidently, 
the construction of such a filter requires precisely a foreknowledge of the 
signal itself and therefore is not of utility in the present experimental 
context. In fact, in the absence of a priori knowledge about the signal, 
the best which can be done is to form some average Ig) of the data. The 
construction of a filter which returns such an optimal average is described 
in this section. 

Section 4 describes the truly realistic case, in the experimental context, 
which interests the present authors. There are a large number of pixels, 
typically an array of a few hundreds by a few hundreds, but only a small 
number Are ~ 10 experiments. In the present case it is not possible to com- 
pare the noise power with that which would be reflected by an R,,, which 
would pertain for the classical case of an infinite ensemble. Instead the 
noise power is roughly equally distributed over a limited number of signal 
degrees of freedom. Also discussed in this section is the more practical 
problem of matrix and array size. Arrays of the size mentioned above 
would imply matrices such as Rgg which would have dimensions of the 
order of 10 8 , which is simply not practical. It is shown how the problem 
can be reduced so that the matrices are never larger than Are x Are. 

In each section the theory is illustrated. In Sections 1-3 the examples 
are computer generated. Section 4 has examples drawn from experimental 
positron annihilation data. Finally Section 5 contains the discussion and 
our conclusions. 

1. S IMPLEST  CASE: ONE SIGNAL,  M A N Y  EXPERIMENTS 

In this section we consider the simplest case, namely the generalized 
linear filter which corresponds to an infinite number of experiments. The 
aim is to find a filter which extracts, in an optimal fashion, a signal 
corresponding to a vector l f )  from the ith experiment in which the data 
corresponding to [gi) = I f )  + [ni) is the signal degraded by the presence 
of the noise reflected by [ni). What is required is a filter W such that 
[e;) = W [ g , . ) -  [ f )  is a minimum in the appropriate sense. More specifi- 
cally, the filter is required to minimize 

A = ( e [ e )  (I.1) 

where .~ implies the ensemble average of X over a very large (infinite in the 
limit) number of experiments. Since it is only the noise which is to change 
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from experiment to experiment, this is equivalent to an average over all 
possible noise signals. Evidently, l e ) =  ( W - 1 ) I f ) +  W In), whence 

A = <fl  (1 - W*)(I - W ) I f >  - <fl  WT(1 -- W*)In> 

- <nl Wr(1 - W ) I f >  + <hi WrWIn> (1.2) 

Since only the noise changes between the different members of the ensemble, 
this can be simplified to 

A = <f[ ( 1 -  W t ) ( 1 -  W ) I f ) - -  <f[ ( 1 -  W t) Win)  

- <nl W * ( 1 -  W ) I f > +  <nl WVWIn> 

= <fl ( 1 -  W*) (1 -  W ) I f > +  <nl WVWIn> (1.3) 

where in writing the last line it has been observed that, e.g., In>--*0 
because the average is over an infinite ensemble of random noise signals. 

The next step is to expand this equation using an appropriate com- 
plete set of states. To this end, the pixel set Ix, y )  is introduced. The data 
comprise a two-dimensional image. It is not implied that the pixels are 
independent. It might be that if an experimental event implies a finite 
intensity at x, y there is also an intensity in the neighboring pixels. In this 
basis set g(x ,y)=<x,  ylg> corresponds to the actual image which 
represents the data set. With this definition, 

A = T r [ ( 1 -  Wt)Rs[(1-  W)+ WtR,,,W] (1.4) 

involves the matrix 

(x, Yl Rfflx', y'> = <x, y l f > ( f l x ' ,  y'> (1.5) 

while 

<x, Yl R,,, Ix', y'> = <x, yln><nlx', y'> (1.6) 

and where now W also denotes a matrix in the pixel vector space. 
Demanding that the variance 6A = 0 for, e.g., every 6 W t results in the 

equation 

6A = 0 = Tr[6  Wt(R[r(1 - w) + R,,, W)] (1.7) 

which implies that (Rf f (1 -  W)+ R,,,, W)=0 ,  i.e., the optimal linear filter 

W= R~r( Rcr+ R . . ) -  ' (1.8) 
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This is written in terms of the signal autocorrelation operator RsI= I f ) ( f l ,  
which is not accessible experimentally. However, this is related to the similar 
autocorrelation functions 

Rgg= [ g ) ( g l  (1.9) 

for the data and R,,, for the noise. Using again In ) = 0, valid for an infinite 
ensemble, it is trivial that 

Rf f  = R g g -  R .... (1.I0) 

which represents a statement that the "power" in each pixel of the signal 
is equal to that in the data minus the noise power. 

It is assumed possible to calculate from a model and/or determine in 
a separate experiment the noise autocorrelation function, whence com- 
bining (1.8) and (1.10) yields the filter W. 

This filter W is an ideal filter in the sense that, given a noisy data set 
Igl ) = I f )  + In~ ), the result 

W I g , ) ~ l f )  (1.11) 

i.e., is noise-free. The intensity of the result reflects the strength of the signal 
in the data. 

There exists a "Hamiltonian" which follows from W. It is observed that 
A = ( f l  ( 1 -  W * ) ( I -  W)l f ) +  (nl WTWIn) is the sum of two definite 
positive terms, since each is the normalization integral of some vector. Since 
W minimizes A, it follows that I f )  is a vector which minimizes the expecta- 
tion value of the Hamiltonian 

5~f-- (1 - W*)(1 - W) (1.12) 

Since our is manifestly Hermitian, it follows that l f )  is the ground-state 
vector for this Hamiltonian. The eigenvalue 

1 
fo-  (1.13) 

(1 + ( f l  R,,,, I f ) )  z 

corresponding to I f ) ,  reflects the signal-to-noise ratio in a typical member 
of the data set. Further, the remaining eigenvalues are all unity, i.e., there 
is one small eigenvector corresponding to the signal and many which are 
close to unity and have eigenvectors which reflect noise signals. 

On occasion, it is desired to find the best fit to the data of a set of 
models Im, ), Im2), Ira3), [ m 4 )  ..... Because of the well-known Hamiltonian 



684  B a r n e s  et  al. 
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Left: The noise-free signal; right: a typical data set. The signal-to-noise ratio is 
roughly unity. 

minimal principle, it follows that the model with the smallest expectation 
value, 

(m,I ~" Ira,) 
e = (1.14) 

(milmi) 

is the closest to I f ) .  
The developments presented in this section are illustrated in Figs. 1 

and 2. To the left in Fig. 1 is shown the noise-free signal, while to the right 
is a typical data set. The signal-to-noise ratio is roughly unity. In Fig. 2 is 
shown, from left to right, the filtered signal and the eigenvectors of o~ with 
the lowest and the next lowest eigenvalues. The lowest eigenvalue is zero 
with numerical precision and almost unity for what is evidently a noise 
signal on the right. 

Of course, the result that W is an ideal filter, with only a single small 
eigenvalue for o~, corresponds to an idealized situation which cannot be 
realized in practice. However, these results remain approximately valid in 
a sense which will be elaborated upon below. 

1 

~ t// 0.2 0.5 0 

0.1 -0.2 

0 0 
20 40 20 40 20 40 

Fig. 2. Left to right: The filtered signal and the eigenvectors of .,~ with the lowest and the 
next lowest eigenvalues. The lowest eigenvalue is zero with numerical precision and almost 
unity for what is evidently a noise signal on the right. 
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2. SEVERAL SIGNALS,  M A N Y  EXPERIMENTS 

Because of its nature, it is possible that an experiment yields, in a non- 
random fashion, data sets which correspond to more than one signal. The 
signal vectors corresponding to these possibilities are [f~ ), I.f2), etc., and 
the experiment gives the results [g , )  = [f~ ) + [hi), [gi)  = [f2)  + In,), etc., 
with probabilities p , ,  P2, etc. That  these data sets differ in a nonrandom 
fashion implies, in the present context, that, e.g., [f~ ) - I f2)  is at the most 
an improbable noise signal. In writing the above it has been assumed that 
the noise signal is of the same statistical character for the two signals. 

Consider the case when there are only two possible signals. Given that 
the difference between the signals is larger than the noise and that a 
suitable filter W exists, then it is clear that if, for the ith experiment, 

[g,)  = [fz ) + [n,) (2.1) 

the difference 

w Ig , ) -  rL) 

will have a smaller normalization than 

(2.2) 

W i g , ) -  If2) (2.3) 

It is desired that W minimizes the average of the smaller of these normal- 
izations which reflect the "error." Generally, this smaller difference is 

la, > = w In,) - (1 - w)  If, ) (2.4) 

o r  

[d2) = W i n , ) - ( 1 -  W ) I f 2 )  (2.5) 

and the quanti ty to minimize is 

A =Pl (d, [dl )" +P2(d2[d2) (2.6) 

where the average is over all noise signals, and where again the 
probabilities of the signals are p~ and P2. It is straightforward to derive the 
result that, again, 

where now more generally 

W= RffR L' (2.7) 

R I I = ~  I f , )  P, (,f,I (2.8) 
i 
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and where still 

RII= Rgg - R .... (2.9) 

is determined from the data, given the noise spectrum. 
For the special case of two signals with equal weight, it is possible to 

write 

if, ) = I f )  + ~ ld)  (2.10) 

and 

If2) - - I f )  - ~  Id) (2.11) 

where it is assumed that both I f )  and ]d) are normalized vectors. It 
follows that 

Rjf= I f ) ( f l  + a  2 Id) (d l  (2.12) 

It is observed again for this particular case that I f )  and [d) are automati- 
cally orthogonal. However, in general it is true that 

Rzr= ~ F, IF,)( F,[ (2.13) 
i 

where F~ and IF~) are the eigenvalues and orthonormal eigenvectors of Ryy. 
Such a decomposition is always possible since Ryy is Hermitian. 

The filter constructed in this fashion remains essentially "ideal." To a 
very good approximation, the filter W= I f ) ( f l  + Id) (d l ,  and so, given 
some signal, e.g., 

g~> = If~ > + In,> = If> +/~ Id> + In,> (2.14) 

it follows that 

WIg , )  = I f )  + fl Id) (2.15) 

i.e., the signal with the noise eliminated. Notice that the present formula- 
tion leads to the same filter, (2.7), independent of the number of signals 
anticipated. 

The formalism also leads again to a Hamiltonian ~ = (1 - W*)(1 - W). 
The data now contain n signals and the corresponding number of small 
eigenvalues. As before, the remaining eigenvalues, reflecting noise signals, 
have values ~ 1. 

This ~ represents a way in which to analyze a data set for the 
presence of more than a single signal without a priori knowledge that this 
is in fact the case. 
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Fig. 3. Left: The two signals; right: two typical data sets, i.e., the signal plus noise. 

It is possible to use essentially the same scheme in the case when each 
data set is a fluctuating mixture of the two signals, i.e., 

Ig,-) = u~ If~ ) + v~ If_,) + In,) (2.16) 

with v~ + u~ = 1. The two signals might, e.g., be recovered by filtering many 
data sets and retaining only the extreme cases. 

The results of this section are illustrated by Figs. 3-5. To the left of 
Fig. 3 are shown the two signals, while to the right are two typical data 
sets, i.e., the signal plus noise. Figure 4 shows from left to right the three 
eigenvectors of ~ff with the lowest eigenvalues. On the left the vector with 
the smallest eigenvalue is seen to correspond to the average signal. The 
center is a vector which corresponds to the difference, while the third eigen- 
value corresponds to the noise signal. In Fig. 5 are shown the two signals 
recovered by filtering typical members of the data set. 

These figures reflect a real potential application of the present 
methods. A filter can be constructed which embodies the collection of 
data for some number  of possible experimental outcomes. The filter will 

0 -0.3 -0.2 
20- 40 20 40 20 40 

Fig. 4. Left to right: The three eigenvectors of ~ with the lowest eigenvalues. On the left the 
vector with the smallest eigenvalue is seen to correspond to the average signal. The center is 
a vector which corresponds to the difference, while the third eigenvalue corresponds to a noise 
signal. 
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Fig. 5. The two signals recovered by filtering typical members of the data set. 

accurately return the appropriate signal stripped of its noise. It is a scheme 
which uses the a priori  knowledge gained in many previous experiments to 
perform a useful noise reduction. 

3. M A N Y  S I G N A L S ,  L I M I T E D  E N S E M B L E  

It is rarely possible in interesting situations to perform a limiting large 
number of experiments. It is therefore appropriate to modify the analysis 
for the case in which there remains an important average noise 1~). 

Consider the simplest case when only a single signal is expected. It is 
relatively straightforward to repeat the analysis of Section I, retaining the 
average noise signal. The resulting ideal filter is 

W= I f ) ( g l  R~g' (3.1) 

However, in the absence of any a priori  knowledge of I f ) ,  it is impossible 
to construct this filter. It is intriguing that such a knowledge would not 
be necessary if it remained the case that I f )  was the ground state for 
~ ' f~=(1-  W t ) ( 1 -  W), since there are any number of ways to find, e.g., 
numerically, such a ground state. Unfortunately it is not possible to 
establish the required minimal principle for this case. 

In fact, on general grounds, it is clear that for a given ensemble {Igi)} 
of data, and in the absence of any a priori  knowledge except for a model 
for the noise power, the filtered signal can only be some weighted average 
of the set {[gi)}, i.e., the filtered signal is 

Ig) = ~  w;Ig,)  = I f )  + I~) (3.2) 
i 
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were the weights must obey Zi  w;= 1. The filter should yield I g )  as a 
result, hence the error vector is defined to be [e,-) = W Ig~) - [ g ) .  It is easy 
to show that 

Rgg = R ~  --b R .... (3.3) 

where 

R~ = I~><~1 (3.4) 

plays the role of Riy in the earlier development. The filter is 

W= R ~ R ~  I (3.5) 

However, the optimal weights {w~} have yet to be determined. Substituting 
the result for W into the expression for A, it is found that the minimum for 
A corresponds to a maximum for a matrix element of the noise power 
matrix: 

(gl  R,,,, Ig)  (3.6) 

where this matrix is now defined by 

R,,,, = ~  lan,) w, (6n,I (3.7) 

with 16n~)= I n ~ ) - I n ) ,  and where In) was defined by (3.2). Using this 
definition, we find that the quantity to be maximized is 

S = ~ w, I (~1 &n,)l 2 (3.8) 
i 

subject to the constraint that Z w;= 1. Introducing a Lagrange multiplier 
and taking the variation with respect to each w; results in 

d d 
~ =  - - - ( w l  I(gl~inl>12) = - (w21(~,16nz)l 2) . . . .  (3.9) 

dw l dw z 

Given that the data sets differ only in their noise signals, and that there are 
sufficient pixels in the image that the total noise power in the image is the 
same for each example of the noise, then the functional dependence 
1(~16n;)l 2 =F(w~) must be the same independent of i. It follows that 

wl = w2 = w3 . . . .  (3.10) 

i.e., the expected result that the best expression for I g )  is simply the plain 
average over all the data sets. An example when the data sets contain noise 
with different powers will be discussed in the next section. 



690 Barnes et  al.  

0.2 0.5 0 

-0.2 
0 0 

20 40 20 40 20 40 

Fig. 6. The signal and noise treated are similar to those shown in Fig. 1. Left: A typical 
filtered signal; center: the vector with the lowest eigenvalue; right: the noise signal associated 
with the second smallest eigenvalue. Observe that now the filtered signal remains degraded by 
the average noise. 

Given the specification of the filter for many signals given at the 
beginning of Section 2, the derivation is identical with the simple replace- 
ment I f ) ~  Ig) ,  i.e., the same result (2.7) obtains, and the discussion of 
that section applies. 

Figure 6 illustrates the developments of this section, again using 
computer simulations. The signal and noise are similar to those shown in 
Fig. 1. The panels of Fig. 6 correspond, on the left, to a typical filtered 
signal, in the center to the vector with the lowest eigenvalue, and to the 
right to the noise signal associated with the second smallest eigenvalue. It 
is to be observed that now the filtered signal remains degraded by the 
average noise, and the separation between the single small ( ~ 0 )  and large 
( ~  1) eigenvalues is less extreme. 

4. SEVERAL S IGNALS,  SEVERAL E X P E R I M E N T S  

This is perhaps the case of most interest. The idea is that, although it 
might be expected that the experiment corresponds to a single signal, the 
analysis will admit the possibility that, in fact, there are nonrandom fluc- 
tuations from experiment to experiment and/or that data contain rather a 
mixture of different signals. 

The important difference envisaged in this section is that there are far 
too few experiments for the convergence of R,,, to that expected for a very 
large ensemble. For example, if the experiment yields a 100 by 100 array 
of pixels, then the convergence necessary for the equation Rgg = R~,~ q- R,,, 
would require many times I00 x 100= 104 experiments, which typically is 
not practical, or even desirable. The situation envisaged in the present 
analysis is that there are perhaps N,. = 10 experiments for an array of this 
size. It is assumed that the number of pixels is large. With this assumption, 
it is the case that, for each experiment, the noise power Tr R, ,  converges 
very well to its average value p, .  
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The other matter to be dealt with in this section is more practical in 
nature. With 104 total pixels the matrices Rgg and R ..... etc., ~fexpressed in 
the pixel basis, are of dimension (104)2= 108, which is very large even by 
current computing standards. Such large matrices are, in fact, not necessary 
and not useful. It has already been observed that the filtered signal cannot 
be other than a linear combination of the various data vectors ]gi) and 
this implies that the dimensions of the matrices need not exceed the 
number of data sets N e. 

In order to form a basis set, the autocorrelation function 

ge Ne 

Rgg=lgi)(gi[  = Z wilgi)(gi]  = Z GilGi)(Gil (4.1) 
i =  1 i =  1 

for the data is constructed. The expression to the right corresponds to the 
result of diagonalizing the previous, experimentally determined expression. 
The IG~) are a set of N,. orthonormal eigenvectors of Rgg, while Gi are the 
corresponding eigenvalues. Necessarily these vectors are a complete set 
with respect to the data vectors, i.e., 

Ne 

]gi) = ~. dl, ]G,,) (4.2) 

In this data basis set, the specific data set I g i )  is represented by a vector 
( d ; ,  i , d 2 ..... du,~). Clearly any relevant vector can be expressed in a similar 
fahsion. Since there are very few members of the data set as compared with 
the number of (nonzero) pixels, the noise set 16hi) are, to a very good 
approximation, independent vectors each of which, to a not so good 
approximation, has the same norm (6n i l6n i )~p , , ,  i.e., roughly the same 
noise power spectrum. Even if there are a few ( < N,.) effective signals, most 
of the vectors IG , )  are normalized examples of the noise and the corre- 
sponding G, ~ P, .  

For simplicity of presentation, it is assumed that the data contain only 
a single valid signal. The model noise matrix is 

Ne 

R,,, = ~. p,, [G,)(Gi[ (4.3) 
i = 2  

where it is understood that GI has the largest eigenvalue. (Notice the lower 
limit of the sum.) As a practical matter it is convenient to set p,, = min{G,.} 
and to use, as a quality measure, the ratio min { Gi}/p,~ ~ The value p,mOdeJ 
is that calculated from a noise model or obtained from an independent 
experiment. However, there remains a complication. Given the rather small 
number of data sets Ne, the correct relationship is Rgg = R~  + R,,,,- IF)(nl. 
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The problem is that ItS) is not known except for a good estimate for its 
noise amplitude, which is ~ X/~e times smaller than the noise in a typical 
data set. It is implied that the eigenvalues for the i > 1 should lie in a range 
1 ~ 1 - 1 / x / ~ ,  i.e., if N~~ 10, there is to be expected an ~ 3 0 %  variation 
in the noise eigenvalues. This will be seen in the illustrations below. 

The matrix operations necessary for the construction of W and ~ are 
then trivial and can be performed analytically. Specifically, in the I G,,) 
basis set, Rgg is diagonal with a diagonal comprising the eigenvalues {G;}, 
while R,,, is similar but with a constant diagonal --~p,,. It follows, ignoring 
the corrections due to I~)(ril, that R~ has a diagonal {Gi-p ,} ,  while W 
has the diagonal { 1-p,, /Gi}, and the diagonal of Yg reflects the eigen- 
values {(p,/Gg)2}. Clearly the eigenvectors for all of these mathematical 
objects are the [G;) and the only real computational effort required is to 
determine the coefficients in the decomposition 

Ne 

[G~) = Y" ci,(w,,) ~/2 Ig,,) (4.4) 
n = l  

These c ~. are determined by observing that the IGj) are eigenvectors of Rgg, 
i.e., 

Ne Ne 

RgglG,)= ~ Y'. (Wj)'/Zlgj)(Wj)'/2 (gjlgk)(Wk)l/Zc~=G, IG,) (4.5) 
j = l  k f f i l  

i . which implies that the column vector (c k, k = 1, N~) r is an eigenvector of 
the symmetric matrix 

M(j, k) = (wj) u2 (gyl gk)(w~) I/2 (4.6) 

constructed from the overlap between the various data sets and the weight 
factors w; introduced in Section 3. The eigenvectors written in terms of 
pixels, with the coordinates (x, y), Gi(x, y), are obtained from 

Ne 

Gi(x, y)= ~ ci,(w,) t/z g,,(x, y) (4.7) 
n =  1 

The filtered result is 

Ne Ne 

Ws(x, y ) =  ~ ~ cj(1 -p,,/G,)(wy/2 ( & I s )  g~(x, y) (4.8) 
i = l  j ~ l  

where Is) is some new data vector to be filtered, and (g j l s )  are the over- 
laps with the already specified data sets. None of the numerical calculations 
involves matrices larger than Ne by Ne and the largest objects to be stored 
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are the Ne data sets g~(x, y). The last task in connection with this filter is 
to calculate the weights w;. These involve the overlaps ( g l fn ~ )  and must 
be calculated self-consistently. With conditions specified at the beginning of 
this section, the overlap is ( f [ f n i ) ~  O, since the sign of the elements of 
6n~ are random and there are many pixels. Further, since there are few 
examples of the noise and again since there are many pixels, ( 6 n j l 6 n i ) , ~ 0  
if i r  Statistically the only part of the overlap which can have any 
appreciable magnitude is w i ( f n i l f n i )  - i i = wip,, ,  where p ,  is the noise power 
for the data set [g;). It follows that ct = -(d/dwi)wi3(pin)"= -3w~2(pi,)  z, 
whence 

(4.9) 

where 

0.02- 

p',, 

is the harmonic average of the noise power. 
This is the expected result for the weights w i. For example, consider 

the case where each pixel is the accumulation of a certain number of counts 
and there is no other appreciable source of noise. If the total number of 
counts for a given normalized data set is Ni, then the noise divided by the 
signal goes as 1 / x / ~  and the corresponding power is Pl, ~ 1/N~. It follows 

0.015- 

0.01 - 

0.005- 

30 ~ 4 0  
20 

0 
Fig. 7. A typical data set. 
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that a given normalized data set must be weighted by Ni, the total number  
of counts it contains. This finally implies that I o~) is simply the result 
obtained by accumulating all of the counts into one data set. 

Figures 7-15 illustrate an analysis of experimental data for an 
untwinned sample of the high-temperature superconductor  YBa2Cu 3 O7_,~. 
The total number  of useful counts is ~ 10 9 and these have been divided 
among nine different experiments. The number  of counts was not the same 
for each experiment and hence the formalism with the weight factor wi was 
necessary. Figure 7 shows a typical data set. Figure 8 plots the entries in 
the eigenvector {cl, } of the matrix M which corresponds to the lowest 
eigenvalue. This reflects the weights w~ and illustrates that, while they are 
comparable,  they are not all the same. It is observed that data set 2 had 
the lowest number  of counts and also the lowest weight in this vector. This 
same eigenvector in the pixel basis is shown in Fig. 9. This does not differ 
from the data averaged with the weights w~. Figure 10 illustrates a typical 
eigenvector corresponding to the noise. Because of the large number  of 
pixels, such a vector is difficult to represent in a useful fashion. To create 
Fig. 10, the actual result, which could not be reproduced in a printable 
form, was averaged using a Gaussian smoothing function. The eigenvalues 

0.5 

0.45 

0.4 

0.35 

// \ 

0"1t5 

0'00, , , , , , , , 

1 2 3 4 5 6 7 8 

Fig. 8. The entries in the eigenvector {c i.} of the matrix M which corresponds to the lowest 
eigenvalue. This reflects the weights w, and illustrates that, while they are comparable, they 
are not all the same. It is observed that data set 2 had the lowest number of counts and also 
the lowest weight in this vector. 
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0.02- 
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0.015- 

0.01 - 

0.005- 

0.- 
40 

30 

10 

0 0 

Fig. 9. This same eigenvector as in Fig. 8, but now in the pixel basis. 

of ~f~ for this example were 1.00, 0.96, 0.95, 0.85, 0.82, 0.77, 0.67, 0.65, 0.00. 
It has been verified that all the eigenvectors, except that associated with the 
smallest eigenvalue, have the appearance of noise, as for the example, 

10. The spread in the eigenvalues for the noise is ~33% ~ 1/x/~, Fig. a s  

would be expected for nine data sets. 

X 10 "3 

6~ 

4 

4 0  
30   JJ'40 

30 
~ 2o 

10 
0 0 

Fig. 10. A typical eigenvector corresponding to the noise. Because of the large number of 
pixels, such a vector is dimcult to represent in a useful fashion. To create this figure the actual 
result, which could not be reproduced in a printable form, was averaged using a Gaussian 
smoothing function. 
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In addition to the apparent, nearly isotropic, approximately Gaussian 
structure seen in Fig. 9, there is a small ridge which passes over the summit. 
In spite of this ridge the data for this crystal orientation should have a 
symmetry which permits the signal to be added to itself after a rotation by 
180 deg. Such an averaging procedure has been simulated by performing 
reflections about the x or y axis of half of the data sets. This is simpler, for 
computational reasons, than the correct procedure, which would be to 
double the effective number of data sets by adding as new sets the original 
ones modified by such a reflection. If the symmetry is good, there should 
remain only a single small eigenvalue. If this is verified for a reflection 
about the x axis, this is no t  the case for a reflection about the y axis, due 
to a small bias introduced by the nonsymmetric sample-source geometry 
along this direction, which is made evident by the two new eigenvectors, 
with small eigenvalues, shown in Figs. 11 and 12. These have again been 
smoothed for ease of reproduction. The lowest two eigenvectors were 0.00 
and 0.22 or 0.00 and 0.28 for the two possible reflections. 

To illustrate the analysis of two signals, the data sets 5 and 6 were 
rotated by 90 deg. This should bring the signal due to the ridge into 
evidence as a new vector with a small eigenvalue. The eigenvector with the 
smallest eigenvalue is identical in appearance to Fig. 9. The second eigen- 
vector is shown in Fig. 13; again smoothing has been used. The corre- 
sponding eigenvalues were 0.00 and 0.0156. An almost identical result to 
Fig. 13 can be obtained by taking the difference between each data set and 
the same data set rotated by 90 deg and then averaging over all data sets, 

0.01 - 

0.005-0 

-0.005- 

-0,01> 
4o 

30 40 

20 
20 

0 0 

Fig. I 1. The eigenvector with the second smallest eigenvector when half the data have under- 
gone a reflection. 
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x 10 .3 

6 

3O 

20 . . . . < - - /  20 30 

10 
0 0 

Fig. 12. Similar to Fig. 11, but for the other nonequivalent symmetry reflection. 

i.e., this signal corresponds precisely to the anisotropy in the signal due to 
the ridge. It is of the form of the ridge rotated by 90 deg and subtracted 
from the unrotated equivalent. Notice, however, that this anisotropy in the 
data is made evident, in the filter, by the addition of data sets via the con- 
struction of Rgg. Because the anisotropy in the signal is very small, it is 

8.83. 
�9 .O0t 
O. 

I:Z 

8 8 

Fig. 13. The second eigenvector for the case when data sets 5 and 6 have undergone a 90 deg 
rotation. Again smoothing has been used. The corresponding eigenvalue is 0.0156. 

822/76/1-2-46 
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0"061 

-o02j 

, o  
8 6 ~ 8 10 

0 

Fig. 14. To show that the ridge is differently oriented, here the anisotropy is shown in the 
filtered data sets. The top graph is for data set 5, while the lower is for data set 3. The 
difference in sign evident in this graph shows that the filter does return the smoothed signal 
of a ridge with the correct orientation. 

X 10 .3 

6 

_o 
4o 

30 40 
30 

10 
0 0 

Fig. 15. The lower graph shows the unfiltered data, while the upper graph is the filtered 
equivalent; see the text. The noise reduction is apparent. (Again each example was smoothed 
to make reproduction possible. The actual noise signal is larger in both cases.) 
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difficult to show that, e.g., the filtered versions of the data 5 and 6 have the 
ridge differently oriented than the filtered versions of the other data sets. 
Each such filtered result is identical in appearance to Fig. 9. To show that 
the ridge is differently oriented, Fig. 14 shows the anisotropy in the filtered 
data sets. T h e  top graph is for data set 5 while the lower is for data set 3. 
The difference in sign evident in this graph shows that the filter does return 
the smoothed signal of a ridge with the correct orientation. 

The last illustration comprises constructing the filter with all the data 
sets except for data set 1. The filter W thus contains the prior experience 
of the other 8 similar data sets. It is used to filter the "new" data set 1. 
Since the noise is barely evident in the full signal, the effect on the 
anisotropic part of the result obtained by a subtraction after a rotation by 
90 deg is again used for this illustration. The lower graph in Fig. 15 shows 
the unfiltered data, while the upper graph is the filtered equivalent. The 
noise reduction is apparent. (Again each example was smoothed to make 
reproduction possible. The actual noise signal is larger in both cases.) 

5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The present approach has an interesting relationship with the 
Karhunen-Lo~ve transformation (see e.g., ref. 5). Given an ensemble of 
correlated data sets, this is the linear transformation which expresses these 
correlated sets in terms of a noncorrelated basis. The matrix which effects 
the transformation is precisely the autocorrelation matrix Rgg which 
appears in the present developments. If the aim is to encode, in an optimal 
fashion, these data, it is envisaged that the basis set given by the 
Karhunen-Lorve transformation is to be truncated by some prescription. 
The truncation eliminates that part of the basis Which has a small weight 
in each of the signals and thereby encodes the data with a minimum 
degradation of the information content. Such unimportant parts of the 
basis set correspond to eigenvectors of Rgg with a small eigenvalue. 

The present approach might be thought of as a special extension of 
this transformation method, and represents a specific optimal resolution of 
the truncation problem. In the situation envisaged here there is a more or 
less large ensemble of data sets which contains one or a few significant 
experimental signals. Each member of the experimental ensemble comprises 
one or another of these possible signals degraded by the noise. It is 
assumed in the analysis that there is an a priori or a posteriori knowledge 
of the noise autocorrelation matrix R,,,. The presently derived filter W 
might be thought of as generalization of the Karhunen-Lorve transforma- 
tion which in a single step constructs the relevant noncorrelated basis set 
and realizes the optimal truncation for the present noise reduction exercise. 
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Since the object here is to reduce the noise, rather than encode the signal, 
the truncation is realized by including a suitable weight for each basis vec- 
tor and, evidently, does not reduce the size of the vector space which is 
invoived. 

In conclusion, a statistical theory for linear filters constructed from 
experimental data has been presented. The only a pr ior i  knowledge required 
to construct this filter is a model and/or a separate experiment for the noise 
power spectrum. 

In the case when there are many but not an infinite number of 
experiments the prescription for W leads to a filter which when it acts on 
the results of any single experiment returns the signal with a strong reduc- 
tion in noise. When there is only a single signal but many experiments, the 
associated Hamiltonian ~ r  - W) has only a single small 
eigenvalue and the corresponding eigenvector reflects this signal. The other 
eigenvalues are close to unity and correspond to typical examples of the 
noise. If instead two signals are present, .Jog= ( 1 -  W t ) ( 1 -  W) has two 
small eigenvalues and the corresponding eigenvalues reflect the average and 
difference signals. In this case the same filter W projects out the correct 
signal from each data set suppressing the noise. 

Using actual data from positron annihilation experiments, it has 
proved possible to illustrated the various possibilities. It is envisaged that 
in the future it will be useful to construct a filter which contains the prior 
knowledge drawn from all previous experiments on the same class of 
materials. For example, it might be that a filter contains all the available 
positron data for YBa2Cu307_,~ for a given orientation but  with different 
values of the oxygen variable 6. When used to filter new data, the result 
will be the noise-reduced signal for the appropriate value of 5. The greater 
the prior knowledge contained in the earlier data sets, the greater the noise 
reduction. This has evident application for the quick analysis of new 
samples. 
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